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Background & aims: The impact of nutrient patterns on cognitive decline is complex and findings are still
inconclusive. We aimed to identify major nutrient patterns and to explore their association with
cognitive decline over time among older adults.
Methods: In a population-based cohort, 2250 cognitively healthy people aged �60 years were identified
at baseline (2001e2004), and followed-up to 9 years. Global cognitive function was tested with the Mini-
Mental State Examination (MMSE) at baseline and follow-ups. Nutrients intake was assessed on the basis
of food intake using a 98-semi-quantitative food frequency questionnaire at baseline, and nutrient-based
patterns were identified by principal components analysis based on 30 nutrients. Mixed-effects linear
regression models were used to determine their association with change in cognitive function taking into
account potential confounders.
Results: Four major patterns (the plant-, animal-, dairy-derived nutrients and animal/plants-derived fats)
were identified. Over the follow-up time, each one unit increment in plant- (b ¼ 0.081, P ¼ 0.002) and
animal-derived nutrients pattern scores (b ¼ 0.098, P < 0.001) was associated with slower decline in
MMSE score. On the other hand, one-unit higher in dairy-derived nutrients pattern was related to a faster
decline in global cognitive function (b ¼ -0.064, P ¼ 0.014). No significant association between animal/
plants fats pattern and cognitive decline was observed. In stratified analyses, the association of high
scores of plants- and animal-derived nutrient pattern with slower cognitive decline was stronger in APOE
ε4 carriers than in ε4 non-carriers.
Conclusions: Plant- and animal -derived nutrients are associated with preserved cognitive function,
especially among the APOE ε4 carriers, whereas nutrients derived from dairy products may accelerate
cognitive decline in older adults.

© 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
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1. Introduction

With global aging of population, number of older adults with
cognitive decline and dementia has increased dramatically
becoming a pressing public health concern [1]. The current absence
of effective pharmacological treatment opens new avenues in
identifying strategies able to prevent or delay the onset and the
disease progression [2]. Among them, adoption of healthy lifestyle
and intervention on dietary habits, seem to be particularly feasible
and cost effective [3].

Despite considerable research efforts over the last two decades,
the role of nutrients in influencing age-related cognitive decline is
ism. All rights reserved.
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still open to discussion. Epidemiological evidence suggests that the
intake of single nutrients including antioxidants (carotenoids, C,
and E), B vitamins group (B9, B6, B12), and long chain n-3 fatty acids
from dietary sources, is associated with lower cognitive decline in
most observational studies [4]. However, results from intervention
trials on individual nutrients supplementation are inconclusive [5].
Since people consume a complex combination of dietary compo-
nents interacting with each other rather than isolated foods or
nutrients, recently a growing body of research has focused on di-
etary patterns (DPs) to assess usual diet in relation to cognitive
decline [6]. The majority of these studies derived DPs based on a
priori assumptions (hypothesis-driven approaches) about healthy
dietary components, such as Mediterranean Diet [7,8], or using a
posteriori approaches, that have the advantage of reflecting the
actual dietary intakes observed in a given population by capturing
all the complexity of the food ‘matrix’ [9e17]. Most of the pro-
spective studies that applied data-driven methods have focused on
food patterns, reporting that adherence to Healthy/Prudent dietary
patterns characterized by high consumption of fruit, vegetables,
legumes, nuts, poultry, fish, and vegetables oils are associated with
better cognitive function. At the same time, the high content of red
and processed meat, animal and trans fats, and sweets of the
modern Western diet, may accelerate cognitive decline
[9e12,14,15,17]. Although foods-based DPs offer a more immediate
interpretation of the results and an easily translation into public
health recommendations, they do not provide information about
the bioactive components of the food with biological function,
beyond various dietary habits, independently from the specific food
sources they derive from [18].

As far we know, no prospective studies have investigated the
impact of nutrients-based dietary patterns on cognitive decline.
Within the Swedish National Study on Aging and Care in Kung-
sholmen (SNAC-K), we have previously shown that high adherence
to the Prudent dietary pattern, based on food groups, was associ-
ated with less cognitive decline over 6 years of follow-up, whereas
a high adherence to the Western dietary pattern was related to a
faster decline in cognitive function [11]. In order to explore the
possible biological basis for the observed association, in the present
work we aimed to identify major diet-derived nutrient patterns,
and to examine their association with cognitive decline using 9-
year follow-up data from the SNAC-K study.
Fig. 1. Flow chart of SNAC-K study participants.
2. Methods

2.1. Study design and study population

Participants were derived from the ongoing longitudinal study,
SNAC-K [19], which includes individuals aged 60 years and older
living in the Kungsholmen district, a central area in Stockholm,
Sweden. At baseline (2001e2004), the sample was randomly
selected from 11 age groups: 60, 66, 72, 78, 81, 84, 87, 90, 93, 96, and
99 or older. The follow-up assessment is performed at 6-year in-
tervals for younger age cohorts (60, 66, and 72 years) and at 3-year
intervals for older age cohorts (78, 81, 84, 87, 90, 93, 96, and 99
years). The first follow-up for the older cohorts was conducted from
2004 through 2007 (3-years follow-up), the second follow-up for
the older cohorts and the first follow-up for the younger cohorts
were carried out form 2007 through 2010 (6-year follow-up), and
the third follow-up for the older cohorts was performed from 2010
through 2013 (9-year follow-up). Among the 5111 persons initially
invited to participate, 3363 were examined (response rate, 73.3%).
Of them, 2250 participants were left for the current study after
exclusion of 322 people with dementia at baseline, 164 subjects
with missing Mini-Mental State Examination (MMSE) score, 33
Please cite this article as: Prinelli F et al., The impact of nutrient-based di
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persons with MMSE score � 24, and 594 people with incomplete
dietary data at baseline (Fig. 1).

The Regional Ethical Review Board in Stockholm, Sweden
approved the SNAC-K project. Written informed consent was ob-
tained from each participant, or from a proxy (i.e. a close family
member) for cognitively impaired participants.

2.2. Dietary intake assessment

Dietary intake at baseline was collected using a country-specific
SFFQ with 98 food and beverage items [20]. Participants were
inquired about how often on average over the past 12 months they
consumed each food item on a fixed 9-level scale ranging from
never to four or more times per day. The respondents indicated
their average portion with the support of four colour pictures
illustrating a plate containing increasing amounts of staple foods:
[1] potatoes/rice/pasta, [2] meat/fish, and [3] vegetables. For other
food items, natural portion sizes such as an apple, or average
portion sizes for sex and age were used [20]. Frequencies were
converted into daily consumption, and total energy and nutrients
intake was derived from the food composition database of the
National Food administration [21]. Because intake of most nutrients
was not normally distributed, variables were log transformed.
Nutrients intake was adjusted for total energy intake using the
residual method [22] and then standardized to make comparable
different units of measurement. The 98-food items were collapsed
into 32 food groups, according to their nutrient composition and
food similarities.

2.3. Cognitive function assessment

The global cognitive functioning was assessed with the MMSE
[23] administered by trained neuropsychologist at baseline and at
the 3-, 6- and 9-year follow-ups. The assessment followed a stan-
dardized procedure for administration and scoring.

2.4. Covariates assessment

At enrolment, nurses and physicians collected data on socio-
demographics including age, sex, and education, medical history,
current use of medications and lifestyle habits, through face-to-face
interviews by trained staff following a structured protocol. Partic-
ipants also underwent a general clinical assessment including an-
thropometrics and arterial blood pressure measurements.
Educational level was divided into elementary school, high school,
and university. Civil status was classified as married (including
cohabitants), widow (er)/divorced, and single. Height and weight
were measured using standard protocols and body mass index
etary patterns on cognitive decline in older adults, Clinical Nutrition,
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(BMI) was calculated as weight (kg) divided by height (m2). Alcohol
consumption was categorized into three categories: no/occasional,
light-to-moderate drinkers (1e7 drinks/week for women and 1e14
drinks/week for men), and heavy (�8 drinks/week for women and
�15 drinks/week for men). Smoking status was grouped as never-
or occasional smokers, former, and current smokers. Physical ac-
tivity was categorized on the basis of both frequency and intensity
during the past 12 months, as: i) physically inactive (never or less
than 2e3 times/month; ii) health enhancing (light exercise several
times per week or every day); and iii) fitness-enhancing (moder-
ate-to-intense exercise several times per week or every day) [24].
Chronic diseases at baseline as vascular (hypertension, stroke,
coronary heart disease, atrial fibrillation, cerebrovascular diseases,
and heart failure), metabolic (diabetes and dyslipidaemia), cancer,
and depression were defined using a combination of clinical ex-
aminations, patient medical histories, and medical records [25].
Peripheral blood samples were collected from all participants and
genotyping was performed to determine Apo-lipoprotein E (APOE)
allelic status that was dichotomized into any 34 carriers or 34
nonecarriers. Information about the participants’ vital status was
ascertained through the Swedish Cause of Death Register during
the entire follow-up period.

2.5. Data analysis

2.5.1. Identification of nutrient-based dietary patterns
A panel of 30 macro- and micronutrients providing a compre-

hensive and non-redundant picture of the traditional Swedish diet
Table 1
Factor loading matrix for the four nutrient-based patterns identified by Principal Compo

Nutrientsa Nutrients-based patterns

Plant-derived nutrients Anima

Total protein - 0.77
Fibre 0.82 -
Disaccharides - �0.43
Monosaccharides 0.72 �0.37
Starch 0.31 -
Cholesterol e 0.50
SFAs �0.63 -
MUFAs �0.56 -
PUFAs - -
Iodine - 0.69
Phosphate - 0.42
Iron 0.28 0.40
Calcium - -
Potassium 0.81 -
Sodium - 0.79
Magnesium 0.73 -
Selenium - 0.70
Vitamin C 0.85 -
Vitamin B1 0.57 0.34
Vitamin B2 e -
Vitamin B3 0.34 0.79
Vitamin B6 0.72 0.29
Folic acid 0.86 -
Vitamin B12 e 0.49
Vitamin K - 0.26
Vitamin D - 0.51
Vitamin E 0.44 -
Zinc - 0.72
Retinol �0.39 -
b-carotene equivalents 0.70 -
% Variance explained by each factor 28.16 21.67
Cumulative % of variance explained 28.16 49.83

Abbreviation: SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, po
was measured by the magnitude of each loading measures. A positive loading indicates a
nutrients for each factor and were shown in bold typeface; loadings <0.25 in absolute v

a Energy-adjusted nutrients.
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was set to identify nutrient patterns. Exploratory principal
component analysis (PCA) was performed on the correlationmatrix
of the nutrients (Table 1). To determine the number of components
to retain, we considered a combination of the following criteria: the
interpretability of the factors, the proportion of total explained
variance, and the visual inflections in the scree-plot of eigenvalues.
Varimax (orthogonal) rotation was applied to the factor loadings
matrix in order to facilitate the factors interpretability. Nutrients
with rotated factor loadings greater or equal 0.40 in a given factor
were used to label the factor. Each subject received a factor score for
each component extracted, with higher score indicating relatively
higher adherence to that nutrient pattern. Nutrient-based patterns
were modelled both continuously by assessing the linear effect for
every unit increase in nutrients patterns score, and categorically as
low and high score (the value below the 50th percentile was
considered as reference category).

2.5.2. Statistical analysis
Characteristics of the participants by nutrient-based patterns

intake were compared using Chi-square tests for categorical vari-
ables and t-test for continuous variables. To test the hypothesis that
nutrients-based patterns would affect the rate of change in MMSE
scores over time, we used linear mixed-effects model using follow-
up time (years), as the time variable. Random effects included
intercept and slope for time. Fixed effects included the interaction
term between time and each nutrients score. Specifically, positive
b-coefficients indicated a decreased rate of cognitive function
decline over time attributable to increase in nutrients-based
nent Analysis carried out on 30 nutrients (n ¼ 2250).

l-derived nutrients Dairy-derived nutrients Animal/plant fats

0.54 -
- -
0.51 -
- -
- �0.30
- 0.61
- 0.48
- 0.65
�0.37 0.48
- -
0.82 -
- -
0.89 -
0.36 -
- -
0.32 �0.34
0.43 0.35
- -
0.33 -
0.90 -
- –

- -
0.30 -
0.54 0.26
- 0.45
- 0.33
- 0.67
0.45 -
0.28 0.30
- -
17.93 10.96
67.75 78.72

lyunsaturated fatty acids. The importance of the corresponding nutrient to the factor
n increased intake of the nutrients Loadings �0.40 in absolute value define the main
alue were suppressed.

etary patterns on cognitive decline in older adults, Clinical Nutrition,
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patterns scores. The basic model was adjusted for age, sex, educa-
tion, and included simultaneously each retained nutrients pattern
score. Then, in the multiple-adjusted model, we further controlled
for civil status, physical activity, smoking, total energy intake (Kcal),
and alcohol intake. We ran separate analysis by adding APOE 34
status to the model. We also adjusted for vascular and metabolic
disorders, cancer, depression, and body mass index in a separate
model as they can be considered either confounders or mediator of
the hypothesized association. We explored our data for potential
effect modification by covariates on the association between nu-
trients patterns and cognitive decline by adding interaction terms
to the model. When heterogeneity was present, stratum-specific
estimates were evaluated.

We also performed sensitivity analyses comparing characteris-
tics of the participants included and excluded from this study ac-
cording to the completion of the SFFQ at baseline. We ran the
analysis after excluding participants with prevalent diabetes at
baseline to be confident that the degree of adherence to nutrients
patterns was not affected by this condition. Moreover, we
controlled for the confounding effect of any potential pre-existing
undiagnosed chronic diseases at baseline, by excluding from the
analysis those subjects who had died within the first 3 years of
follow-up. Finally, due to the high education level of the study
population, we also performed the analysis restricted to partici-
pants with MMSE > 27 at baseline [26] to avoid reverse causation
on dietary habits due to under diagnosed pre-dementia stage.

All statistical analyses were performed using Stata 15.0 version
(StataCorp LP., College station, Texas, USA), and a two-sided P-value
� 0.05 was considered statistically significant.

3. Results

Table 1 shows the factor-loading matrix and total cumulative
explained variance for the four main nutrients-based dietary pat-
terns extracted, which explained 78.7% of the total variance (total
nutrient variability). The first factor retained labelled ‘Plant-derived
nutrients’ had the greatest positive loading on fibre, mono-
saccharide, potassium, magnesium, Vitamin C, Vitamin B1, B6, folic
acid, Vitamin E, and b-carotene, and the largest negative loadings
on monounsaturated and saturated fatty acids, and accounted for
28.2% of the total variance. The pattern ‘Animal-derived nutrients’
was characterized by the greatest loadings on total proteins,
cholesterol, phosphate, sodium, selenium, vitamin B3, B12, vitamin
D, and zinc, and negative loading on disaccharides, and explained
21.7% of the variability. The third pattern named ‘Dairy-derived
nutrient’ with 17.9% of the explained variance had the greatest
loading on proteins disaccharides, phosphate, calcium, selenium,
vitamin B2 and B12. The last pattern called ‘Animal/plant fats’
explained 11.0% of the variance and was related to the greatest
loading on cholesterol, saturated fatty acids (SFAs), mono-
unsaturated fatty acids (MUFAs), polyunsaturated fatty acids
(PUFAs), Vitamin K, and Vitamin E.

3.1. Food sources of each nutrients pattern

To improve the interpretability of the identified patterns, we
calculated the Pearson's correlation coefficient between the
continuous factors and the daily frequency of 32 food groups ob-
tained on the same data. For the ‘Plant-derived nutrients’ pattern
the highest values of the correlation coefficient were with all types
of fruit (r ¼ 0.66), vegetables (r ¼ 0.62), and vegetables oils
(r ¼ 0.23), but it was inversely correlated with refined cereals (r ¼ -
0.26), butter (r ¼ -0.24), and alcoholic beverages (r ¼ -0.22). The
‘Animal-derived nutrients’ patternwas highly correlated with fresh
meat (r ¼ 0.35), poultry (r ¼ 0.29), and fish (0.30) and inversely
Please cite this article as: Prinelli F et al., The impact of nutrient-based di
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related to total fruit (r ¼ -0.25), sweet/sugars (r ¼ -0.26), and sweet
beverages (r ¼ -0.25). The ‘Dairy-derived nutrients’ pattern was
characterized by high intake of milk (r¼ 0.70), yogurt (r¼ 0.37) and
cheese (r ¼ 0.23), and was inversely correlated with alcoholic
beverages (r ¼ -0.21). The ‘Animal/plant-derived fats’ pattern
positively correlated with eggs (r ¼ 0.47), butter (r ¼ 0.27), and
vegetable oils (r ¼ 0.26) and negatively with whole bread (r ¼ -
0.25), grains and cereals (r ¼ -0.27).
3.2. Nutrients-based dietary patterns and demographic-clinical
characteristics and other lifestyle factors

Participants’ characteristics according to nutrient-based dietary
patterns are presented in Table 2. Participants with low scores for
“Plant-derived nutrients” pattern were more likely to be older,
males, less educated, married, less physically active, former or
current smokers, and heavier drinkers. People with lower intake of
“Animal-derived nutrients” pattern were more likely to be older,
widower or divorced, and had lower BMI. Participants with high
scores for “Dairy-derived nutrient” pattern were more likely to be
older, females, widower or divorced, and abstainers or occasionally
drinkers. Individuals with high intake of “Animal/plant fats”
pattern were more frequently current smokers. There were no
differences in their baseline MMSE score.
3.3. Association between nutrient-based dietary patterns and
cognitive decline

The three years rate of change in global cognitive functionwas a
decline of 0.612 units in MMSE score (b ¼ -0.612). Table 3 reports
the b-coefficients with 95% Confidence Intervals (CI) and P-values
representing the change in mean MMSE score comparing the high
versus the low intake of each pattern and for 1-unit increment in
nutrients pattern score. After adjusting for age, sex, education, and
total energy intake (model 1), compared to the low intake (below
the median values) of plant- and animal-derived nutrient pattern
those with high intake experienced slower decline on global
cognitive function. However, higher intake of dairy-derived nutri-
ents pattern was associated with faster decline. There was no sig-
nificant association between the animal/plants fats pattern and
cognitive function. Adjusting additionally for civil status, smoking,
alcohol consumption, and physical activity only slightly affected
these associations (model 2). The estimated effects were slightly
attenuated with further adjustment for APOE 34 status, vascular and
metabolic disorders, depression, cancer, and BMI (data not shown).
We found that APOE 34 status modified the relationship of plant- (P
for interaction ¼ 0.001) and animal-derived nutrients patterns (P
for interaction ¼ 0.062) with cognitive function. In stratified anal-
ysis, higher intake of plant-derived and animal-derived nutrients
patterns showed significantly slower cognitive decline in APOE 34
carriers than in 34 non-carriers (Table 4).

In sensitivity analyses, we compared people excluded from the
study (n ¼ 594) with the analytical sample (n ¼ 2250). Persons
excluded were likely to be older, females, widow (er)/divorced,
with lower BMI, less physically active, never smokers, non-alcohol
drinkers, more affected by chronic diseases at baseline, and
exhibited lower global cognitive function at baseline. No differ-
ences in terms of APOE 34 status were observed (Supplemental
Table 1). The exclusion of participants, who reported a diagnosis
of diabetes at baseline and those who had died within the first 3
years of follow-up, did not change the associations between nu-
trients patterns and cognitive decline. Further, the results remained
largely unchanged after restricting the analysis among participants
with MMSE > 27 at baseline (Supplemental Table 2).
etary patterns on cognitive decline in older adults, Clinical Nutrition,



Table 3
Association between nutrients-based patterns and three years mean change in MMSE scores. Positive b-coefficients indicate that an increase in the nutrient-based pattern
intake was associated with a decreased rate of decline in cognitive function during follow-up.

Nutrients-derived patterns Model1 Model2

b-coefficient (95% CIs) Pe value b-coefficient (95% CIs) Pe value

Plant- derived nutrients x timea

High intake vs. low intake 0.207 (0.107, 0.307) <0.001 0.202 (0.102, 0.302) <0.001
One unit increase 0.085 (0.033, 0.137) 0.001 0.081 (0.029, 0.133) 0.002
Animal- derived nutrients x timea

High intake vs. low intake 0.150 (0.050, 0.249) 0.003 0.148 (0.048, 0.247) 0.004
One unit increase 0.098 (0.047, 0.150) <0.001 0.098 (0.046, 0.149) <0.001
Dairy- derived nutrients x timea

High intake vs. low intake �0.124 (�0.224, �0.024) 0.015 �0.125 (�0.225, �0.025) 0.014
One unit increase �0.064 (�0.116, �0.013) 0.014 �0.064 (�0.116, �0.013) 0.014
Animal/plant fats x timea

High intake vs. low intake �0.023 (�0.123, 0.078) 0.653 �0.015 (�0.115, 0.085) 0.767
One unit increase �0.021 (�0.073, 0.032) 0.437 �0.019 (�0.071, 0.033) 0.467

Abbreviation: MMSE, Mini Mental State Examination. b-coefficients (95% confidence intervals) and P-values represent three years change in mean MMSE score comparing the
high versus the low intake of that pattern and per 1-unit increase in nutrients pattern score.

a Change in MMSE score over time attributable to nutrients patterns. Model1 included terms for age, sex, and education. Model2 included also civil status, physical activity,
smoking, alcohol consumption, and total energy intake (Kcal). Four nutrients patterns were mutually adjusted.

Table 2
Baseline characteristics of participants by nutrient-based dietary pattern (n ¼ 2250).

Characteristics Plant-derived nutrients
(�4.33; 3.41)

Animal-derived nutrients
(�4.08; 3.56)

Dairy-derived nutrients
(�3.58; 4.68)

Animal/plant fats (�5.81,
3.23)

Low intake High intake Low intake High intake Low intake High intake Low intake High intake

Age, mean ± SD 71.7 ± 9.3 70.0 ± 9.0 72.2 ± 9.4 69.4 ± 8.6 69.9 ± 9.1 71.7 ± 9.1 70.6 ± 9.0 71.0 9.3
Sex
Males 626 (55.6) 247 (22.0) 436 (38.8) 437 (38.8) 498 (44.3) 375 (33.3) 445 (39.6) 428 (38.0)
Females 499 (44.4) 878 (78.0) 689 (61.2) 688 (61.2) 627 (55.7) 750 (66.7) 680 (60.4) 697 (62.0)
Educational level
Elementary 147 (13.1) 118 (10.5) 132 (11.7) 133 (11.8) 133 (11.8) 132 (11.7) 143 (12.7) 122 (10.9)
High school 560 (49.8) 542 (48.2) 554 (49.2) 548 (48.8) 538 (47.8) 564 (50.2) 548 (48.7) 554 (49.3)
University 418 (37.2) 464 (41.3) 439 (39.0) 443 (39.4) 454 (40.4) 428 (38.1) 434 (38.6) 448 (39.9)
Civil status
Married 605 (53.8) 534 (47.6) 546 (48.5) 593 (52.9) 619 (55.1) 520 (46.3) 548 (48.8) 591 (52.6)
Widow (er)/divorced 336 (29.9) 413 (36.8) 416 (37.0) 333 (29.7) 325 (28.9) 424 (37.8) 377 (33.5) 372 (33.1)
Unmarried 184 (16.4) 175 (15.6) 163 (14.5) 196 (17.5) 180 (16.0) 179 (15.9) 199 (17.7) 160 (14.3)
BMI, mean ±SD 25.91 ± 4.1 25.91 ± 3.9 25.44 ± 3.9 26.38 ± 4.1 25.87 ± 3.9 25.95 ± 4.1 25.75 3.9 26.08 ± 4.1
Physical activity
Inadequate 296 (26.3) 183 (16.3) 252 (22.4) 227 (20.2) 227 (20.2) 252 (22.4) 234 (20.8) 245 (21.8)
Health-enhancing 603 (53.6) 592 (52.6) 598 (53.2) 597 (53.1) 596 (53.0) 599 (53.2) 580 (51.6) 615 (54.7)
Fitness-enhancing 226 (20.1) 350 (31.1) 275 (24.4) 301 (26.8) 302 (26.8) 274 (24.4) 311 (27.6) 265 (23.6)
Smoking status
Never 444 (39.6) 538 (48.3) 498 (44.5) 484 (43.3) 477 (42.8) 505 (45.1) 489 (43.7) 493 (44.2)
Former 473 (42.2) 439 (39.4) 450 (40.3) 462 (41.4) 479 (43.0) 433 (38.7) 479 (42.8) 433 (38.8)
Current smoker 204 (18.2) 137 (12.3) 170 (15.2) 171 (15.3) 159 (14.3) 182 (16.3) 152 (13.6) 189 (17.0)
Alcohol consumption
No/occasional 293 (26.1) 319 (28.4) 324 (28.9) 288 (25.7) 261 (23.2) 351 (31.3) 302 (26.9) 310 (27.6)
Light-to-moderate 637 (56.7) 740 (70.0) 676 (60.2) 701 (62.5) 702 (62.5) 675 (60.2) 682 (60.7) 695 (61.9)
Heavy drinking 193 (17.2) 63 (5.6) 123 (11.0) 133 (11.9) 160 (14.3) 96 (8.6) 139 (12.4) 117 (10.4)
Vascular disorders 858 (76.3) 837 (74.4) 837 (74.4) 858 (76.3) 843 (74.9) 852 (75.7) 837 (74.4) 858 (76.3)
Metabolic disorders 630 (56.0) 648 (57.6) 625 (55.6) 653 (58.0) 637 (56.6) 641 (57.0) 643 (57.2) 635 (56.4)
Cancer 96 (8.5) 83 (7.4) 91 (8.1) 88 (7.8) 83 (7.4) 96 (8.5) 97 (8.6) 82 (7.3)
Depression symptoms 79 (7.0) 90 (8.0) 94 (8.4) 75 (6.7) 80 (7.1) 89 (7.9) 83 (7.4) 86 (7.6)
APOE 34 311 (29.2) 320 (29.7) 329 (30.8) 302 (28.2) 325 (30.1) 306 (28.8) 311 (29.2) 320 (29.7)
MMSE baseline, median (range) 29 (24e30) 29 (24e30) 29 (24e30) 29 (24e30) 29 (24e30) 29 [24e30] 29 [24e30] 29 [24e30]

Data are presented as numbers and proportions, means ± standard deviations (SD), or median and range. Abbreviations: BMI, body mass index; APOE 34, apolipoprotein 34
allele; MMSE, Mini-Mental State Examination; Nutrient-based patterns were categorized in low and high intake using the median of each component as cut-off point (the
value below the 50th percentile was considered the reference category).
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4. Discussion

In this large population-based longitudinal cohort study of older
adults, we found that i) the major nutrients patterns based on food
intake included plant-, animal-, and dairy-derived nutrients pat-
terns and animal/plant fats pattern; ii) higher intake of the plant-
and animal -derived nutrients were associated to decreased decline
in cognitive function over 9 years, whereas a diet high in nutrients
Please cite this article as: Prinelli F et al., The impact of nutrient-based di
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derived from dairy products may accelerate cognitive decline over
time; and iii) the relation between the first two nutrient patterns
and change in cognitive decline appeared to be more pronounced
among persons who are APOE ε4 carriers. The association of animal/
plant fats patterns with cognitive decline was not evident.

So far, no prospective cohort studies explored dietary patterns at
nutrients level in relation to cognitive decline, but a few cross-
sectional studies on this topic are available. One study derived
etary patterns on cognitive decline in older adults, Clinical Nutrition,



Table 4
Association between nutrients-based patterns and three years mean change in MMSE scores according to APOE ε4 status. Positive b-coefficients indicate that an increase in the
nutrient-based pattern intake was associated with a decreased rate of decline in cognitive function during follow-up.

Nutrients-derived patterns APOE ε4 non-carriers (n ¼ 1499) APOE ε4 carriers (n ¼ 624)

b-coefficient (95% CIs) Pe value b-coefficient (95% CIs) Pe value

Plant- derived nutrients x timea

High intake vs. low intake 0.176 (0.057, 0.295) 0.004 0.254 (0.069, 0.439) 0.007
One unit increase 0.040 (�0.023, 0.102) 0.212 0.178 (0.084, 0.273) <0.001
Animal- derived nutrients x timea

High intake vs. low intake 0.033 (�0.085, 0.152) 0.583 0.364 (0.180, 0.550) <0.001
One unit increase 0.053 (�0.007, 0.114) 0.085 0.161 (0.066, 0.256) 0.001
Dairy- derived nutrients x timea

High intake vs. low intake �0.142 (�0.261, �0.024) 0.019 �0.067 (�0.253, 0.117) 0.474
One unit increase �0.059 (�0.120, 0.002) 0.060 �0.073 (�0.168, 0.021) 0.129
Animal/plant fats x timea

High intake vs. low intake �0.038 (�0.157, 0.081) 0.531 0.004 (�0.181, 0.190) 0.962
One unit increase �0.037 (�0.098, 0.024) 0.230 0.017 (�0.087, 0.121) 0.751

AbbreviationsMMSE, Mini Mental State Examination. b-coefficients (95% confidence intervals) and P-values represent three years change in mean MMSE score comparing the
high versus the low intake of that pattern and per 1-unit increase in nutrients pattern score.

a Change in MMSE score over time attributable to nutrients patterns. Model adjusted for age, sex, education, civil status, physical activity, smoking, alcohol consumption,
and total energy intake (Kcal). Four nutrients patterns were mutually adjusted.
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nutrient patterns based on plasma biomarkers and reported that a
pattern high in plasma vitamins B (B1, B2, B6, B9, and B12), C, D, and
E was associated with better cognitive function among older adults
[16]. In another study, Gu et al. found that an inflammation-related
nutrients pattern characterized by low intake of calcium, vitamins
(D, E, A, A, B1, B2, B5, B6, B9), n3-PUFAs, and high intake of
cholesterol was associated with worse cognitive function in non-
demented older people [27]. Since current evidence on the role of
a posteriori dietary patterns and cognitive decline is mainly based
on food groups, we discuss the identified associations also in terms
of food items. A previous cross-sectional study reported that a di-
etary pattern dominated by frequent intake of vegetables, fruits,
and legumes, and highly correlated with fibre, vitamins A, C,
magnesium and potassium, was associated with lower cognitive
impairment in older Chinese women [13]. Similar results were
observed in a US cohort aged 45 and older, in whom a pattern
consisting of plant-based foods, was associated with higher
cognitive performance over time and a pattern including fried food
and processed meat was associated with lower cognitive perfor-
mance [15]. Furthermore, adherence to “Healthy/Prudent” dietary
patterns characterized by vegetables, fruits, legumes, fish and/or
poultry, were found associated with lower cognitive deficit in other
prospective cohort studies of older adults, whereas “Western”
patterns were related with high cognitive decline [11,17,28]. Other
cross-sectional studies report that food patterns rich in plant-based
foods and fish were associated with lower whereas pattern char-
acterized by higher intake of red and processed meat, and fried
food was related with greater cognitive deficit [9,10,14]. In addition,
a recent study showed that low intake of poultry, fish, animal fats,
dietary fibre and vitamins B2, B6, and B12 was associated with
increased cognitive and functional impairment among older
women [29]. In agreement with these studies, we found that nu-
trient's combinations of fibre, vitamins B, C, E, minerals, and b-
carotene (Plant-derived nutrients pattern) and of proteins,
cholesterol, phosphate, sodium, selenium, vitamin B3, B12, vitamin
D, and zinc (Animal-derived nutrients patterns), were associated
with lower cognitive impairment. Possible biological explanations
for this protective effect may come from beneficial properties of the
nutrients with high loadings on these two nutrient patterns.
Vitamin C, B1, E, b-carotene [30,31], niacin, and selenium [32,33]
may exert an effect via their antioxidant capability of reducing
brain damage due to reactive oxygen species (ROS), or by regulating
the methylation of homocysteine cycle (Vitamin B6, B12, and B9),
which in turn impact on neurotoxicity [34]. Adequate protein
Please cite this article as: Prinelli F et al., The impact of nutrient-based di
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intake is associated with less cognitive impairment in particular
among older people possibly through its pivotal role in maintaining
brain integrity and function, and for their contents of tryptophan
and tyrosine, precursors of serotonin and catecholamines (e.g.
dopamine), respectively [35]. Vitamin D has potential effect on
neurotrophic factor production, neurotransmitter release, oxidative
stress mechanisms andmodulation of inflammatory processes [36].
In our study, we found that the nutrient pattern characterized by
high intake of proteins, disaccharides, selenium, Vitamin B2, and
B12 (Dairy-derived nutrients pattern) was related with faster
cognitive decline. This finding could be counterintuitive since some
of these nutrients have been considered key protective molecules
for cognition (32, 33. 35). However, the interpretation of the effect
of each single nutrient is little informative without taking into ac-
count the food sources (dairy products) and those nutrients that are
highly correlated to them (i.e. SFAs) [37]. Examining the food
sources, results from previous epidemiological studies are contra-
dictory. A recent meta-analysis reported that the inverse associa-
tion between milk consumption and the risk of cognitive disorders
was limited to Asian and African populations, characterized by
lower intake of milk and dairy products [38]. It has been suggested
that high intake of fermented dairy foods (e.g. yogurt and cheese) is
inversely relatedwith cognitive disorders [39], on the contrarymilk
consumption is associated with greater decline over time [40]. One
of the possible biological explanations for this detrimental effect
can be attributable to the high lactose and D-galactose (sugars)
content in non-fermented dairy products, as liquid milk, which
induces neurodegeneration in animals [41]. This observation is
particularly considerable in Scandinavian countries that are char-
acterized by high milk consumption together with a high lactase
enzyme activity, raising the concentration of glucose and D-galac-
tose in blood [42]. However, further studies are needed to confirm
this finding, especially considering that very few studies on
nutrient-based dietary pattern are available. The null association
between global cognitive function and Animal/plant fats pattern,
which was mainly based on eggs, butter, fish, and vegetable oils,
might be due to the fact that this nutrient pattern correlates posi-
tively with nutrients, which might have different biological effect
on our outcome. For examples, previous studies reported that
higher SFAs consumption, particularly from milk products and
spread, is related with worse global cognitive decline trajectories,
whereas higher intake of MUFAs and long-chain n-3 PUFAs, from
vegetables oils and fish, is related to better trajectories [43,44]. In
the present study, higher adherence to Animal/plant fats pattern
etary patterns on cognitive decline in older adults, Clinical Nutrition,
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might result in consumption of nutrients with opposite effect
related to cognitive outcome such as PUFAs (a considered protec-
tive factor) vs SFAs (a believed risk factor), particularly considering
the different food sources they come from (butter and cream vs
vegetables oils and fish). Thus, the reduction of these nutrients into
a single pattern might hinder detection of these effects resulting in
attenuating the association [37]. Further longitudinal studies aimed
to disentangle the effects of different types of fats and also their
food sources should be performed.

The findings on the identified nutrients patterns are generally
supporting our previous study on dietary patterns [11] and proved
possible biological explanations for previous results. The Plant-
derived and the Animal-derived nutrient patterns mostly reflect
the Prudent pattern and the Dairy-derived pattern and the Animal/
plant pattern are generally reflecting the Western pattern. How-
ever, food items and nutrients estimated might reflect not exactly
the same concept. People consume a diet that consists of a com-
bination of nutrients with cumulative and interactive effect [18,37].
For example, the differences betweenmeat intake in previous study
and Animal-derived nutrient pattern in this study could be inter-
preted with the fact that meat contains bioactive components (i.e.
proteins, selenium, zinc, etc.), which are protective for cognitive
function, while others (i.e. SFAs) are considered harmful. Dietary
patterns were identified according to the correlation between food
items, while nutrients patterns were extracted on the basis of the
correlation between individual nutrients. Thus, Animal-related
nutrient pattern does not only reflect meat intake [18].

Interestingly, our findings suggest that APOE 34 status, the well-
established genetic risk factor of sporadic Alzheimer Disease [45],
significantly modified the effect of the Plant- and Animal-derived
nutrient patterns on cognitive decline revealing a stronger pro-
tective effect in ε4 carriers as compared with 34 non-carriers. In
agreement with this finding, it has been reported a protective effect
of seafood/dietary U-3 fatty acids on cognitive function only in the
34 carriers [46]. The exact mechanisms behind these observations
need to be clarified. One hypothesis is that APOE 34 carriers might
have compromised neuroanatomical reserves, poor brain protec-
tion and repair mechanisms than ε4 non-carriers, making them
more vulnerable to environmental risk conditions that could affect
the brain [45]. On the other hand, this also means that ε4 carriers
might be also more susceptible to such factors that can be
considered protective amplifying their effects [45,46].

When interpreting the results, some shortcomings should be
acknowledged. In our study, a selection bias cannot be rule out as
the exclusion of people with incomplete dietary data resulted in
overrepresentation of younger and healthier participants, under-
estimating the true association between nutrients patterns and
cognitive function. Dietary information was self-reported and
imprecision in dietary recall may have affected the observed as-
sociation. In addition, diet was assessed once at baseline and data
on possible dietary changes thereafter were not available although
we expect that dietary patterns remain quite stable over time,
particularly among older adults [47]. Limitations of PCA may arise
from the arbitrary decisions involved in the definition of nutrient
patterns, including the interpretation and labelling of the factors
[48]. However, as there is no standard procedure and terminology
for the names of the pattern, we labelled each pattern based on the
possible effect on health and easy interpretation as well possible
intervention at population level. Although the MMSE is the most
often used screening instrument for providing a global measure of
cognitive function in clinical and research settings, is less sensitive
than other screening tools in detecting slight cognitive deteriora-
tion, therefore the observed associations might be underestimated
[49]. Future investigations should focus on specific cognitive do-
mains measured through comprehensive neuropsychological test
Please cite this article as: Prinelli F et al., The impact of nutrient-based di
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battery. Moreover, we cannot exclude the possible residual or un-
measured confounding, although we adjusted for all the most
known risk factors. Finally, SNAC-K population sample included
urban and well-educated people limiting the generalizability of our
findings. Major strengths of this study include its community-
based longitudinal design with comprehensive data collection,
and the long follow-up period. Further, we generated nutrients
patterns using PCA, an exploratory data reduction technique able to
provide an overall picture of the dietary behaviours of the popu-
lation under examination taking into account for the complex in-
teractions among nutrients and their cumulative effect. This
approach is particularly useful when researches are interested in
exploring whether there are underlying patterns that explain
variability on people’ nutrients intake [50]. Another strength of the
study is the use of nutrients that, compared to foods, are universal,
not exchangeable, and less country-specific. Besides, dietary pat-
terns at nutrient level, reflecting a combination of bioactive com-
ponents largely implicated in the pathophysiology, can be easily
interpreted in a biological framework [18, 51].

In conclusion, our study provides evidence that an optimal
combination of nutrients mainly from fruit, vegetables, whole ce-
reals, fish, fresh meat, and poultry are associated with preserved
cognitive function especially among the APOE ε4 carriers, whereas
higher consumption of certain foods, as dairy products, may
accelerate cognitive decline in older adults. These findings might
have public health implication encouraging the importance of food
choices in usual diet, and promoting tailored nutritional in-
terventions targeted to older adults at high risk of developing
cognitive impairment and dementia.
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